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An atom in a gas or plasma experiences a random potential which gives rise to 
the so-called pressure broadening. The corresponding line shape is obtained in 
the usual two-level model by a trace operation from the Fourier transform of 
( T(t, 0)), the average of the time-development operator. Under certain technical 
assumptions it is rigorously shown by probabilistic techniques that (T(t, 0)) falls 
off faster than t -3+~ for any e > 0, giving a continuous Fourier transform and 
line shape. An alternative expression is derived for the latter which ex_p]icit!y 
displays its positivity and which is a limit over increasing perturber numbers. 
The latter generalizes results of von Waldenfels. Part I is preparatory for Part lI, 
where a noncommutative cluster expansion is applied to the line-shape problem. 
Several open questions are pointed out which merit a rigorous investigation. 

KEY WORDS: Pressure broadening; stochastic differential equations; 
asymptotic decay; N-particle limit. 

1. INTRODUCTION.  THE MODEL. NOTATION 

W h e n  one  p laces  an  a t o m  wi th  H a m i l t o n i a n  H A in a gas o r  p l a s m a  the  

a t o m ' s  e l ec t rons  will  e x p e r i e n c e  an  a d d i t i o n a l  r ap id ly  v a r y i n g  p e r t u r b i n g  

p o t e n t i a l  V e ( t  ), due  to the  C o u l o m b  po ten t i a l s  of  the  gas  o r  p l a s m a  

par t i c les  (per turbers ) .  I f  o n e  t rea ts  the  p e r t u r b e r s  as c lass ica l  p o i n t  par t ic les ,  

the  p o t e n t i a l  Vp(t)  d e p e n d s  on  the  c o n f i g u r a t i o n  of  the  pe r tu rbe r s ,  e.g., on  

the i r  pos i t ions  a n d  ve loc i t i e s  at  t i m e  t = O. D e s c r i b i n g  the  gas or  p l a s m a  b y  
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a statistical ensemble, Ve(t ) becomes a random potential, and the total 
Hamiltonian is 

H(t )  = H A + Ve(t  ) (1.1) 

A spectral line emitted by atoms in a gas or plasma will be broadened 
and deformed. This has two reasons, first the Doppler shift caused by the 
atoms' thermal motion, and second the effect of the perturbing potential 
V e. It is customary to calculate the broadening for an atom at rest and then 
essentially to convolute with the Doppler broadening; cf. Ref. 1 for a 
review of the subject and a collection of references. It should be pointed 
out, however, that the situation is more complicated because the potential 
V e also depends on the atom's velocity. (2) In the present paper we consider 
the case of an atom at rest. 

In the general formula for the line-shape function the time-develop- 
ment operator Tn(t,O) for the time-dependent Hamiltonian H enters. It 
satisfies the Schr6dinger equation 

= - ( i /h)[  Z4A + Ve(t) ]7".(t,O) (1.2) 

which is now a stochastic differential equation. 
Its solution is a complicated time-ordered exponential. Although V e is 

a simple sum of individual perturber potentials, TH(t, 0) does not factorize 
into factors originating from individual perturbers. In the interaction pic- 
ture with respect to H A this is seen to be due to the noncommutativity of 
the resulting potentials at different times. Averages or expectations are 
therefore difficult to perform, even if one treats the perturbers as an ideal 
gas, in the plasma case with suitable shielding, as will be done here. The 
statistics of an ideal gas can be described by the Maxwell distribution for 
the velocities and either by a uniform distribution of the positions or by a 
distribution of the time and position of closest approach ("collision" or 
"arrival" times and "impact parameters"). The collision times form a 
Poisson process. This was first exploited systematically by von Walden- 
fels. O) The present paper also uses collision time techniques. They are 
nonstandard in this field. 

The atom will be idealized to a two-level system, possibly degenerate. 
This is a standard approximation and it seems to be fairly realistic, as 
explained below. The two energy leveis are of course those associated to the 
spectral line in question. The perturbing potentials for this idealized situa- 
tion are obtained from V e essentially by a projection. Then the Schr6dinger 
equation becomes a finite-dimensional stochastic operator equation for a 
time-development operator T( t, t'). 

The line-shape problem then essentially consists in solving a stochastic 
Schr6dinger operator equation for a time-development operator and in 
determining its expectation. Subsequent Fourier transformation with r e -  
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spect to time with a certain trace operation will yield the line-shape 
function. The Fourier transform involved makes it clear that one cannot 
take just a few terms of the Dyson series for the time-ordered exponential 
because that would be a good approximation for small times only. 

There are many interesting open questions connected with this prob- 
lem, some more practical and some more theoretical-mathematical. We 
mention a few of the latter. 

(i) How fast does the expectation of the time-development operator 
decrease when time goes to infinity? How smooth is its Fourier transform 
(and hence the line shape)? 

(ii) Is there a convergent series expansion of the line-shape function? 
(iii) Are there rigorous (and possibly also useful) estimates for the 

asymptotics of the Fourier transform (and thus of the line shape)? 
(iv) Are there rigorous estimates for the line center and the linewidth? 
(v) How will Doppler broadening affect such rigorous results? 
This paper contributes only modestly to the solution of these problems. 

It is rather intended as a stimulant for further research. Question (i) is 
considered in Section 2 of this paper. Under certain technical conditions it 
is shown that the expectation of the time-development operator decays 
faster than I tl-3+~ for any e > 0 and thus is L 1. This implies that its Fourier 
transform and the line-shape function are continuous and vanish at oe. 
This is physically reasonable; but it is also important technical information 
to be used later. These fall-off results are the first of their kind. They merit 
further investigation and extension. 

In Section 3 we derive an equivalent expression for the Fourier 
transform of ( T(t, 0)) which exhibits the positivity properties explicitly. We 
show that it can be written as a limit over increasing perturber numbers 
where we generalize previous results. (3'4) In particular, if ( T ( - , 0 ) ) ~  L 1 
then the convergence is uniform in ~0. Furthermore, an external time- 
independent potential is incorporated. This allows us to treat the ions 
quasistatically. Interesting mathematical problems arise with the replace- 
ment of an upper integration limit by a random variable (Proposition 2.1). 
The main result of this section, Theorem 3.1, is an extension of a result in 
Refs. 3 and 4, the precise relationship being explained at the beginning of 
Section 3. This Theorem will be basic for Part II. 

In Part II of this paper question (ii) on a series expansion for the 
line-shape function is attacked. We generalize an approach of von Wal- 
denfels (3) to include static ions. Previously, only a single particle species 
was covered. Generalizing ideas of Ref. 3 we develop a noncommutative 
cluster expansion in terms of truncated operator functions which are 
related to the Mayer-Ursell functions of statistical mechanics and to the 
truncated n-point functions of quantum field theory. A direct "physical" 
derivation of the first-order term has been given by us in Ref. 5; it is shown 
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that the first order partially contains the overlapping of the perturber 
potentials. A numerical evaluation for Lyman-a gives good agreement with 
experiment on the line wings and deviations in the line center, presumably 
due to the quasistatic treatment of the ions. 

The approach is also generalized to include moving ions. However, it is 
unclear at the moment how good the first-order approximation is in this 
case. 

As for rigorous estimates for the asymptotics of the line-shape function 
[problem (iii)], partial results have recently been obtained by us. <6~ It was 
shown within the line-space model (see below) that the sixth moment of the 
line-shape function exists while the eighth moment does not. This indicates 
an asymptotic fall-off faster than ~ -  7 but not faster than r 

Rigorous estimates for the linewidth and line center [problem (iv)] are 
not known, but they would be of great relevance because recent linewidth 
measurement of Grfitzmacher and Wende (7~ are in disagreement with 
calculations based on static ions by about a factor of 2.4. Good results are 
given by calculations with the method of model microfields (MMM), (8~ but 
it should be pointed out that this is not a microscopic but a phenomeno- 
logical theory, which simulates the stochastic behavior of the perturbing 
potential. There are several other attempts to incorporate ion-dynamical 
effects: cf. Ref. 9 for references and criticism. 

Doppler broadening complicates the whole picture [problem (v)]. 
There are Monte Carlo calculations <l~ which indicate that the use of the 
reduced mass of the ion-radiator system with a convolution by the ordinary 
Doppler profile may be a good approximation. Analytically nothing rigor- 
ous seems to be known about this. 

The Model in Line Space 

Throughout we use units in which 

h = l  
Consider an optical transition from an atomic energy level Ein to Efin. Let 
~'~in and ~f in  be the associated eigenspaces with orthonormal bases ([i>), 
{If)}. Let 

r = g i n -  grin 

and let X be the position operator of the radiating electron (or, if several 
electrons are involved, their sum). If L(r denotes the normalized line- 
shape function, f L dw = 1, then dipole radiation gives < 1) 

L(~) = (2~rl- lA f dt e "~ 

• ~, ((i[Xlf)(f lTH(t,O)*lf ')(f ' lXli '>(i '[TH(t,O)li)>.v (1.3) 
ifi'f" 
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where A is a normalization constant, 

A - '  = ~ ](i[X]f)l 2 
/f 

and where ( )av denotes expectation, i.e., averaging over perturber configu- 
rations. Note that for V e = 0 one obtains 

L(,~) = 6(,~ - O~o) 

It is now convenient to introduce the line space of Baranger ~1~ 

H = ~r ~ H f i n  (1.4) 

and to define operators D, V(t), T(t,  t') in ~ by 

(if[ D [ i ' f ' )  := A (iIX I f ) ( f ' l x l  i ') 

(ifl V(t) l i ' f '  ) :=(i[  Ve(t)l i ' )Syf,  - 8 ir ( f '  ] V e ( t ) l f )  (1.5) 
( ifl Z ( t, t')l i' f ' )  :-- <i[ TH (t, t')] i') ( f'[ T H ( t, t') *l f ) e  i~~ t '') 

It is easy to show that D is positive definite. A simple calculation shows 
that L(~0) is given by 

L = ' f a t  e i(,c - ,~o)tTr(DT(t, 0))a v (1.6) 

It was pointed out by us (6) that Tr(DT(t ,O))av is a positive-definite 
function of t so that by Bochner's theorem it is the Fourier transform of a 
positive measure. Note that although the definitions in Eq. (1.5) are basis 
dependent the formula in Eq. (1.6) is not. 

One usually makes the nonquenching assumption (~) according to 
which one can neglect transitions caused by the perturbers. This means that 

(i1Velf) 

is approximated by 0. Then a straightforward calculation shows that T 
satisfies 

7~(t, t') = iV( t )T( t ,  t') (1.7) 

This Schr6dinger equation is again a stochastic differential equation. If 
shielding is taken into account by a cutoff at the Debye sphere, V(t) has 
discontinuities, but with probability one only finitely many in each 
bounded time interval. At such points Eq. (1.7) is not defined. One may 
consider the corresponding integral equation 

t') = ~ - i f  tds V(s) T(s, t') (1.8) T(t ,  
t" 

We consider a plasma of ions and electrons treated as an ideal gas 
with a charge shielding by a simple cutoff at the Debye radius PD SO that a 
perturber contributes a Coulomb potential or zero to V e depending on 
whether it is inside the Debye sphere or not. If r~(t) is the position of the 
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xth perturber of charge _+ e, its contribution to Vp is thus 

-7- eZlX - r~(t)l- '0(0~ - r~ ( t ) )  (1.9) 

in case of a one-electron atom. Perturbing electrons are taken to move on 
straight lines. With v~ the velocity, ~'~ the collision time (time of closest 
approach), and O~ the impact parameter [P~ = r~(~'~)] one has 

r~(t) = p~ + v~(t - ~-,) (1 .10 )  

Note that OK_t_v~. If the perturbing ions are taken to be at rest (quasistatic 
approximation) one has for them r~(t) =-- r~. 

We can express the one-perturber potential Eq. (1.9) in line space by 
the analog of Eq. (1.5). With Eq. (1.10) one obtains an expression of the 
form 

; t -  (1.11) 

for the xth electron contribution to V ( t ) .  One easily sees that ep is uniformly 
bounded. 

sup Ilcp(0,v,t)l I < ~ (1.12) 
p,v,t 

Collision-Time Statistics 

This was first used in the present context by von Waldenfels, (3) and 
later by us (6) in connection with asymptotics of the line-shape function. 

With probability 1, there is only a finite number of particles in the 
Debye sphere at a given time. One can therefore index the perturbers 
(electrons) according to their collision time. If ~ > 0, the index ~ refers to 
the xth particle colliding after t = 0; if x < 0, it refers to the (l~[ + 1)st 
perturber colliding before t = 0. 4 

For an ideal gas the in terarr ival  (or intercol l is ion)  t imes  

u~ := ~'K+ 1 - ~ (1.13) 

are independent random variables distributed exponentially according to 

ce - cu du (1.14) 

Here c is the m e a n  coll ision f r e q u e n c y  

4 This procedure has to be modified if the shielding is in the form of a smooth Debye-Hiickel 
potential since then the collision rate is infinite. In this case one may first consider a large 
sphere and then let its radius go to infinity. 
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and ~ and v are mean velocity and density, respectively. The collision times 
form a stationary Poisson process. 

The set of impact parameters and velocities {(p~, v~)} are independent 
random variables which are identically distributed [according to 

�89 (m/2k  B TTrpD)Zve- rn~v2/2~:"r dZp d3v (1.15) 

where the factor v expresses the fact that the number of electrons entering 
the Debye sphere is proportional to their velocity v; the special form of Eq. 
(1.15) will not be needed in this paper]. 

Remark. If one has several moving-particle species the above formu- 
lation is changed only slightly. The perturbers get an additional parameter 
(charge, say). The collision times still form a Poisson process with the sum 
of the individual collision frequencies. The averaging is now also over the 
additional parameter. 

Notat ion 

In the following we consider the ions as static. The total potential in 
line space is then of the form 

V ( t ) =  Vi+ Ve(t)= V i + ~ ( p ( p ~ , v ~ ; t - % )  (1.16) 
K 

where V i = Vio,s, V e = Velectron ~. AS a consequence the processes V(t) and 
Ve(t ) are stationary so that, in particular, 

(T( t  + s,t' + S))av = (T(t,t'))av (1.17) 

with similar relations for the correlation functions of the potential. 
The expectation or averaging is decomposed into two steps, first over 

the electrons with a fixed ion configuration, then over ions. The electron 
expectation is written as ( ) ,  

< >:~--'< )electrons (1.18) 

Then the total expectation is 

( )av = <( ))io.s (1.19) 

We introduce the intensity operator Ji for fixed ion configuration, 

(~0) := (2~r)- ~fdt e s,o,( T(t, 0)) (1.20) Ji 

It is easy to see by stationarity that Ji defines a positive operator-valued 
measure. (6) From Eq. (1.6) one has 

L(w) = Tr D(J/(o~ - Wo))ion s (1.21) 
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The ion averaging can be performed with the Holtsmark distribution or a 
variant thereof. (l) 

We will have to consider different time-development operators simulta- 
neously. For the solution of a Schr6dinger-type equation 

d U(t,  t') = - i(?(t)U(t, t') 
dt 

(1.22) 
u(c,  c) = 

we therefore write 

o r  

In this notation one has 

U(t, t') = U(t,  t'; q~(')) (1.23) 

U(t, t') = U(t,  t'; d?) (1.24) 

T(t, c) = u(t, c; v)  

Alternatively, one can use a continuous product notation (cf. Refs. 12, 3, 4). 
The indicator function Xs of a set S is given by 

l, x ~ S 
X s ( X ) =  O, x ~ S  (1.25) 

Furthermore, p and r denote mean density and collision frequency, respec- 
tively. 

2. LARGE-t BEHAVIOR OF (T(t,0)) 

We are going to prove in Theorem 2.1 that under weak assumptions on 
the potential, (T ( t ,  0)) falls off faster than Itl-3+" as It[ ~ ~ ,  for any c > 0. 
One would expect an exponential falloff, and indeed we can prove this if 
one introduces a lower velocity cutoff in the Maxwell distribution. 
Throughout this section we use shielding in form of a cutoff at the Debye 
sphere. 

Proposition 2.1. Consider (T( t ,  0)) for a fixed ion potential and for 
a modified Maxwell velocity distribution in which all velocities smaller than 
some vmi n are excluded. If, for some p(0) and v (~ the one-perturber 
(electron) S matrix in the ion-interaction picture does not have an eigen- 
value 1, then II(T(t, 0)>fl falls off at least exponentially for large It I. 

Proof.  We first consider the case that there is no ion potential and 
the case t > 0. 
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The existence of Vmi n implies that there is a maximal length of time, t L, 
for a perturber to stay in the Debye sphere. Hence the individual one- 
perturber potentials are nonzero in a time interval of length at most t L. To 
estimate II (T(t, 0))11 we consider the time intervals [ - t L, 0], [0, tt], [t L, 
2tL] . . . .  of length t L plus a remainder [nt L, t] with 0 <. t - nt L < 5t L and n 
a multiple of 5. We decompose T(t ,  0) accordingly, 

1 1 

T(t,0) = T( t ,  n t L ) I - [ T ( P t L , ( P -  1)tL) ~- T(t ,  n t c ) I - i T  ~ (2.1) 
n n 

Each operator T~ depends only on perturbers colliding in the (u - l)st, pth 
and (p + l)st interval. Potential contributions from different intervals of 
equal length are independent and identically distributed. 

We denote by ( )~ the conditional expectation given the potential 
originating from all intervals except the pth (i.e., ( ) ,  means averaging over 
the parameters of the ~th interval, everything else being fixed). Then we 
have 

It(Z(t,0))ll = II(Z(t, ntL)Tn(Zn_lTn_2Tn_3)n_2Zn_4 

X Z n _ 5 ( . . .  )n_7Zn_9 . . .  Zs(ZzZ3Z2)3ZJ)l l  

n/5 

< ( l-I l l (Zs~- lZs , -2Ts~-3)5~-2t l )  
v=l 

= ([[(Z4Z3Z2)3ll) "/s (2.2) 

by stationarity and independence. This will yield the exponential falloff if 
the last expectation is less than 1. Assume that it is 1. This holds iff 
II(T4T3T2)3[I is 1 with probability 1 or, equivalently, iff (T4T3T2)  3 has an 
eigenvalue of modulus 1 with probability 1. 

By unitarity of the operators, averaging over any smaller set of 
parameters must also yield an eigenvalue of modulus 1. Now consider the 
event A that in [0, 2tL] and [3t L, 5tL] there is no collision; this has nonzero 
probability. Let A(0 3) and AI 3), A(0~ C A, be the events which are character- 
ized by the additional condition that in [2tt, 3tL] there is no collision and 
one collision, respectively. For configurations in A(0 3~ and AI 3), T4T3T2 
equals ~ and the one-perturber S matrix, respectively. The latter, when 
averaged over A} 3), cannot have the eigenvalue 1 since it does not have this 
eigenvalue in a neighborhood of (O(~176 by assumption and by continu- 
ity. Averaging T4T3T 2 over A(0 3) tO A ~3), all resulting eigenvalues lie strictly 
inside the unit circle. Thus, for configurations in A, [KT4T3T2)3I[ is less 
than 1, proving exponential falloff in the case of zero ion potential. 
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For nonzero ion potential Vi, the same proof goes through verbatim, 
except that, on A0 (3) and A~ 3), T4T3T 2 equals e x p ( -  iVj3tL) and 

U(4t  L , t  L ; V / +  q~(0, v ; ' - r ) )  

= exp[ - iV,.(4t L + z)] U(oe, - o0; exp(iV, �9 )q~(O, v; . ) e x p ( -  iV,. )) 

• exp[ iV/(t L + r ) ]  (2.3) 

respectively; here r ~[2 tL ,3 tc ]  denotes the collision time of the single 
electron. Averaging over A0 (3) tO A} 3) and taking norms, the V/-dependent 
terms can be dropped, and the reasoning is now as before. The case t < 0 is 
analogous. �9 

We now consider the general case, i.e., the usual Maxwell velocity 
distribution. 

Theorem 2.1. Consider a fixed ion potential. If, for some O (~ and 
v (~ the one-particle (electron) S matrix in the ion interaction picture does 
not have an eigenvalue 1, then [l(T(t,0))l[ falls off at least as )]-3+~ as 
]t[---~ oo for any E > 0. 

Proof.  Let t >> 2OD/Vo =- to and let t L -- t L (t) = t ~- ~/4. We denote by 
A L the set of configurations for which all particles that are in the Debye 
sphere at some time between 0 and / spend less than time t L therein. By 
Lemma A.3 the probability of the complement is bounded by const- 
t / t  4 + cons t / t  3. Hence 

I[(T(t,0))fl < II(xALT(t,O))II + cons t / t  3-~ (2.4) 

Again we consider the time intervals [ - to, 0], [0, tc] . . . .  of length t L plus a 
remainder [ntr , t  ] with 0 < t - nt L < 5t L and n a multiple of 5. We decom- 
pose T(t,O) as in Eq. (2.1). Since the set A L arises from a velocity cutoff, 
XAL factorizes into a product 

XAL = X {I) �9 �9 �9 X (n+l) (2.5) 

where X (~) depends only on particles colliding in the vth interval. Then 
stationarity and independence yield, as in Eq. (2.2), 

IKxALT( t, O))II < (IKX(3)T4T3T2)3tl) n/5 (2.6) 

where n ~ t  "/4. We complete the proof by showing that ( - . - )  on the 
right-hand side is smaller than 1, uniformly in t c. Since TaT3T 2 = T(4t  L, tL) 
depends on t through t L, the previous proof has to be refined. We consider 
three consecutive time intervals of length t o = 20o /v  (~ starting at 2t L. Let 
A o be the set of configurations in A r with no perturber in the sphere in all 
three time intervals, and let A t be the set with one perturber which collides 
in [2t L + t 0, 2t L + 2to] with (O, v) values in a small neighborhood of (O (~ 
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v (~ and with no other perturber entering or leaving in [tL,t c + 3t0]. The 
single perturber under consideration thus has a complete collision in this 
interval. Furthermore, A o and A 1 have nonzero probability and, similarly to 
Eq. (2.3) 

XAoV(4tc, to) = xAoT(4tc,  2t r + 3 to)exp(- iV,3to)V(2tL, to) (2.7) 

XA ,T(4tL , to) = XA ,T(4tc, 2tr + 3to) 

X e x p [ -  iVi(2t  L + 3t 0 + ~')] 

x S1(o,v)exp[iV~(2tc  + ~')] T(2 t c , tL )  (2.8) 

where S I is the one-particle S matrix in the ion interaction picture. Again 
XAo., factorize into 

XAo. ~ = XA~gIXfAo.,, X (3) = XZ,toX'3 (2.9) 

where XA~.q depends only on the variables of the interval I 0 = [t r,  t c + 3t0] 
and X~0. ' on the complement; correspondingly for X ~3). We now denote by 
( >1o the average over the variables of the interval 1 o. With Eqs. (2.7) and 
(2.8) we then obtain 

(II(X(3)T4T3T2>3II> <<. (It(Xr 4- XA,)T4T3T2>3tI> 4- (XO)(1 - XAo -- XA ~)> 

<<- (X'z(X'Ao + X'A,)ll<x3,,o(XA&o~ + XA~oSz )>1o11> 
"4- < X ( 3 ) ( 1  - -  XA 0 --  XAI)  > (2.10) 

Now we argue as in the preceding proof. The eigenvalues of Sl(P, v) have 
modulus 1, but none equals 1 in a neighborhood of (p(~176 Since A~ o 
and A [0 are disjoint, one has 

II(X3,zo(XA6J + XA~oSl )>Zoll < ~(X3,,o(XA6o + XAr (2.11) 

with c~ < 1 and c~ depending only on t o. Eqs. (2.9) and (2.10) then yield 

([I(Xr < a < 1 

independent of t (and tL). The case t < 0 is proved similarly. �9 

R e m a r k s .  (1) In the preceding results the ions are treated quasi- 
statically. For moving ions the results carry nearly literally over. The only 
change is that the previous one-perturber electron S matrix in the ion 
interaction picture is replaced by the one-particle electron or ion S matrix 
in the Schr6dinger picture. This is easily seen by repeating the above proofs 
with two particle species and zero external field. 

(2) We suspect that not only a power law decay but an exponential 
decay holds. This is true for instance for the (static) Holtsmark distribution. 
It can also be proved in the nonstatic case if the one-particle potentials 
commute and if the one-particle S matrix satisfies a condition similar to the 
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one above. In the commuting case (T(t ,O)) can be expressed in closed 
form by the one-particle time-development operator. 

(3) In concrete applications one has to check the conditions of 
Theorem 2.1 directly. The explicit form of the time-development operator 
given by Pfennig (13~ for the case that the full Coulomb potential is replaced 
by the dipole term may be helpful. 

(4) The methods of this section make use of the screening by a cutoff 
at the Debye sphere. It is possible that screening by means of a Debye-  
Hiickel potential might be treated with a modification of our methods, e.g., 
by estimating the contribution from the exponential tails. It would be 
interesting to carry the results over to this more general case and to see 
whether the falloff is really not faster than t -3. It would also be interesting 
to modify the criterion of Theorem 2.1 so as to involve the potential 
directly, not via the S matrix. 

3. THE INTENSITY OPERATOR AS AN N-PERTURBER LIMIT 

It is easy to see that the intensity operator Ji(co) of Eq. (1.20) can be 
written as the time limit of a square, thus exhibiting its positivity properties 
explicitly (cf. Lemma 3.1). By probabilistic techniques it is then shown from 
this that the time limit can be replaced by a limit over collision times, which 
are random variables (Proposition 3.1). This in turn is used to replace the 
time limit by a limit over an increasing perturber number (Theorem 3.1). It 
is shown that the intensity operator is connected to tail events. 

These results generalize results of Refs. 3 and 4. In Ref. 3 a lower 
velocity cutoff in the Maxwell velocity distribution was needed and the 
convergence was only in the sense of distributions; in Ref. 4 the velocity 
cutoff was removed. Here we Obtain, without velocity cutoff, convergence 
in the stronger sense of convergence of measures and, more importantly, 
uniform convergence in ~0 if (T(t ,O)) E L 1. These results will be basic for 
Part II. 

Lemma 3.1. Let (T(t ,O)) be absolutely integrable, i.e., in L I. Then 
uniformly in c0 

If (T(t ,O)) ~ L l, Eq. (3.1) still holds in the sense of weak convergence of 
measures. 

Proof. For finite A, one can interchange expectation and integra- 
tions. By stationarity one has 

(T(t ,O)T(t ' ,O)*) = ( T ( t  - t',O)) 
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By a change of variable one can then perform one integration, resulting in 

(2~r) - 'f:Adt (A - l tl)A - 'e/,or( T(t,  0)} (3.2) 

If (T( t ,  0)} E L 1 this converges uniformly in ~ to the Fourier transform of 
T(t, 0) as A --) oc, by Lebesgue's bounded convergence. 

If (T(t ,O)} ~ L 1, the Fourier transform of the right-hand side of Eq. 
(3.1) for finite A becomes a convolution. By stationarity this converges to 
(T(t ,O)} as A--)oc.  By Levy's continuity theorem on convergence of 
positive measures and of characteristic functions (~4) the statement follows. 

II 
We now put 

A = ~'l 'U) = N / c  

in Eq. (3.1) and let N o  oc, where c is the mean collision frequency. With 
some effort we will now prove the crucial result that the upper integration 
limit A = (~'N} in Eq. (3.1) can be replaced by the random variable "c u. The 
difficulty in the proof is that stationarity cannot be used in the simple way 
as in Lemma 3.1 because the integration limit is a random variable. 

Proposition 3.1. Let (T(t,O)} be in L J. Then uniformly in ~0 

If (T(t ,O)} ~ L l, Eq. (3.3) still holds in the sense of weak convergence of 
measures. 

Proof. Without loss of generality we can assume c = 1. We first 
remark that the right-hand side of Eq. (3.4), without the limit, remains 
bounded in norm as N o  oc. This follows from Eq. (A.5) by considering 

together with the crude estimate 

N -1 ( ( 2 N d t e i ' ~  } *} < . N - I ( ( ~ ' N - N ) 2 } =  1 (3.4) 

By this boundedness and by the inequality Eq. (A.6) we can replace 
the upper integration limit ~'N in Eq. (3.3) by ~'~v + So, where s N is positive, 
nonrandom and 

s u = o(N' /2)  (3.5) 

without changing a possible limit. 
Now let 1//2 < a < I. In Eq. (3.1) we take as upper integration limit 

N + N ". Since N"/ /N-~O we can then replace the factor (N + N")  -~ by 
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N -  1. We now show that the difference of the resulting expression and of 
the right-hand side of Eq. (3.3) (without the "lim" and with upper integra- 
tion ~'N + sU instead of SN) goes to 0 as N ~ oo. For this it suffices by the 
inequality (A.6) and the foregoing remark on boundedness that 

( ( rU+N ~ �9 ~ } 
N - I  I I  dte"r(t,O)~(...)* o 0  (3.6) 

J "g N "I- S N .] 

Let ( },~=, denote conditional expectation given that ~'N = S and let P,N(') 
denote the density of the distribution function for ~U- Then the expression 
in Eq. (3.6) can be written as a sum of three integrals, 

x dt2 e ' ( t l - " ) (  T(t, t2)},~ =, (3.7) 
JS + SN ,1 1 

The third term can be estimated crudely as in Eq. (3.4) by 

,g" N - ds p,N (s)(s + s N - N - N ~ )2 
+ N'~- SN 

< e (*N N + N ~ - 

for N large. 
By the variant of Bernstein's inequality in Lemma A. 1 the first factor 

goes to zero faster than any power while (~.4} = O(N4). The first term is 
estimated similarly. 

It remains to discuss the second term in Eq. (3.7). Since t 1 and t 2 are 
later than the Nth collision one may expect that T(t  1, t2) depends essen- 
tially only on the perturbers N + 1,N + 2 , . . . .  Although their collision 
times are not independent of ~'N (only the intercollision times u~ are 
independent), this fact might somehow be exploited to replace ( }~=$ by 
the ordinary expectation ( }.5 Then one might be able to use stationarity 
and the fact that (T( t ,O)}  E L 1. In the following we make these heuristic 
remarks rigorous. 

L e m m a  3.2. If ( T ( t , 0 ) } ~ L  ], then for s N = N  ~, with 0 < f l <  
-~ a - �89 the second term of Eq. (3.7) equals 

r N + N ' - s  r 

N - '  fN+N"-SNdsp~N(S)JsNaN- N ~ J dt ldt2ei~( t ' - t2)(T( t ' ' t2)>+ ~  

(3.8) 

5 Th i s  was  sugges ted  to us b y  W.  y o n  Waldenfe l s .  
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Proof. Let B N and B ~  respectively, be the sets of configurations for 
which those perturbers (electrons) which were in the Debye sphere at time 
~'U and 0, respectively, are all outside the sphere at time *U + SN and s N, 
respectively. Let B~ and B ~ be the complements of these events. By 
Lemmas A.2 and A.4 

P(B~ 3) 
(3.9) 

e(B;~ ) = O(s ;  3) 

Now we insert 

XBN + XB~ = 1 

under the conditional expectation in the second term of Eq. (3.7) and write 
the whole expression as a sum of the two corresponding terms. The term 
with B} can be estimated crudely by 

U - l(XBh (2N ~ - SN) 2) = O(U z~-3B ) / U  (3.10) 

which vanishes for N ~ ~ .  
For configurations in B N and for t I , t 2 >1 ~'U + SN one has, suppressing 

velocities and impact parameters, 

T( t , , t 2 )=  U( t l , t2 ;  V~ + ~ 9~('--~N-- UN+, . . . . .  U~)) 
v>N 

= u ( , , -  v/+ X . . . . .  (3.11) 
\ v>N ] 

since perturbers with collision time less than ~N+I have already left the 
Debye sphere and thus do not contribute to the potential. Hence, by a 
change of the integration variables t~ and t 2 to tt - s and t 2 - s one gets 
with Eq. (3.11) 

N+N ~ 

sf+fsN dll dl2 ei~( t l -  t2) (XBNT( tl ' t2) ~N=s 

N+N~--s 

= f f  dtldt2ei~(tI-t2) 
SN 

x 
\ \ t,>N ItTN=S 

By Eqs. (3.9) and (3.10), XB~ can again be replaced by 1, with error 
o(N). But the remaining random variable under the conditional expecta- 
tion is independent of "ON, and thus ( �9 �9 �9 )~=~ = ( �9 �9 �9 ). Furthermore, 
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since the intercollision times u/are independent and identically distributed, 
one can replace ~ > N  by ~ > 0 "  

By Eq. (3.9) one can now insert Xsg under the expectation, with error 
o(N).  But for a configuration in B ~ one has, if q ,  12 /> SN, 

T(tl , t2) = U( t , , t2 ;  Vi + ~a q)( '--ui . . . . .  u~)) 
\ v > 0  I 

[cf. Eq. (3.11)]. After inserting this into Eq. (3.12) (with BN-+B~ ~,~>u 
~,>0)  one can again omit Xso with error o(N), and thus arrive at Eq. 

(3.8). �9 

P r o o f  o f  P r o p o s i t i o n  3.1 (con t inued) .  Stationarity and a change of 
variable in Eq. (3.8) yields the estimate 

N - I (  N+ Na--SNds p,rN ( s ) ( N  + N ~ - s - sN) f_ ~176 dt I[(T(t, O))]l 
J A r - -  N a - -  oo  

~< N - 1(2N~ - N/~ ) �9 const 

which converges to 0 as N--> oo. This proves the first part of the proposi- 
tion. 

If T(t, O) ~k L 1, one can consider Fourier transforms and convolutions 
as in Ref. 4 and then proceed as in the proof of the second part of Lemma 
3.1. �9 

Corollary 3.1. In Eq. (3.3) one can replace T(t,O) by 

u t,o; v, + Y, + ,,) (3.13) 
v = l  

the time-development operator for the ions and the first N electrons 
colliding after t = 0, shifted by r 1, so that the first collision is at t = 0. 

Proof. In Eq. (3.3) the lower and upper integration limits can be 
replaced by N ~ + r  I and r l v - N / ~ + % ,  respectively, 0 < f l <  1/2, by 
Corollary A.1. By Bernstein's inequality (Lemma A.1), one can assume 

( N -  N" )c  - '  < r u <<,(N + N ~  - '  

with 1/2 < a < 1. Similarly as in Eqs. (3.9)-(3.11) one then concludes the 
statement by Lemmas A.2 and A.4. �9 

We are now in a position to derive two expressions for the intensity 
operator in which the time limit is replaced by a limit over increasing 
perturber numbers. These still exact expressions will be the starting point 
for subsequent approximations. It is convenient to go into the interaction 
picture. 
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T h e o r e m  3,1. Let the time-shifted N-electron potential in the ion 
interaction picture be defined by 6 

N 

~(1 . . .  N ; t ) : = e x p ( i V i t  ) ~ ~p(t - "r, + ~ ' l )exp(- iVi t )  (3.14) 
p = l  

With this potential  let the r a n d o m  operator  5~ (1 . . .  N;  ~) and if-(1 . . .  N;  
w) be defined by 7 

. . .  N;oo):= f dte'(~-v')'e~(1 . . .  N ; t ) U ( t ,  - ~;q~(1 . . .  N ) )  2 ( 1  (3.15) 

if-(1 . . .  N ; ~ o ) : = f d t e  '('~ (U(t,- oo;,~(1 . . .  N ) ) -  g(t)~ 

- ( 1  - g ( t -  u 1 - . . . .  UN))U(oo, -- oo; q~(1 . . . N ) ) )  

(3.16) 

where the real funct ion g satisfies 

;o ;: ~ ] g ( t ) l d t <  ~ ,  [ 1 -  g(t)[dt  < ~ (3.17) 
oo 

Then,  if (T( t ,O) )  E L 1, one has uniformly in 

J i (~)  = lim (2~rN)-~c( f f - (1  . . .  N;o0)ff-(1 . . .  N; t~)*)  (3.18) 
N - ~ o o  

and 

(o~ - V/)J,09)(~ - V i) = lim (2~rN)-  ~e(-.~(1 . . .  N;  o~).~(1 . . .  N;  w)*) 
N--.-~ oo 

(3.19) 

If (T ( t ,  0)) ~ Ll ,  the convergence is in the sense of weak convergence of 
measures. 

Proof. Note  that  2 and  ~ -  are well defined. Indeed,  the integrand 
in Eq. (3.15) has compac t  support  with probabil i ty 1, and  so has that in Eq. 
(3.16) if one chooses 

g ( 0  = - 0 ( -  0 

For  general g one then uses Eq. (3.17). 
The expression in Eq. (3.13) equals 

e x p ( -  iVd) U(t,  0; ~(1 . . .  U ) )  (3.20) 

6 The time shift is such as to have the first collision at t = 0. 
7 The expression in the curly bracket in Eq. (3.16) is essentially the time-development operator 

for ~1 . . .  N, t) with additional terms to get compact support or at least integrability. The 
time shift in g has been chosen in view of algebraic relations to be derived in Part If. 
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by which we replace T(t, 0) in Eq. (3.3). Upon insertion into Eq. (3.3) the 
initial time t' = 0 can be replaced by - oo since the additional terms cancel 
each other. The curly bracket in Eq. (3.3) can then be written as 

{s162 U ( , , -  oo ;~ (1 . . .  N ) ) -  0 ( - t )  

--O(t--rN)U(oo,--oc;O(1 . . .  N))]}  (3.21) 

since for t E (0, re) the additional terms are zero. 
We now show that the integration limits can be taken to - m  and 

+ m. Using the Schwarz-type inequality of Theorem A. 1 we first consider 

N - l / 2 (  { ~ : d t  l[ U(t, - oo; ~a(1. . . N )) - O(-  t) 

--O(t--rN)U(oo,--oO;~(1... N))I[}2} 1/2 

2} 1/2 
<~ N -1/2 ~_~ ( (  f~'N+m+ldt]]''" H) (3.22) 

rn>0 \ ~, arN+m 

where the triangle inequality has been used. The ruth integrand vanishes 
unless at least one of the first N perturbers is still in the Debye sphere at 
time r N + m, which has probability O(m-3), by Lemma A.4. Hence we get 
for Eq. (3.22) the estimate 

~<N- ' /2cons t ( l+  ~] m -3/2) 
rn>l 

which goes to zero for N ~  m. The integral from -oo  to 0 is treated 
similarly. 

The introduction of the function g is now straightforward by means of 
Eq. (3.17). This then yields Eq, (3.18). 

Equation (3.19) is now derived by a simple partial integration. From 
Eq. (3.16) one has 

..@(1 N;oa) = lim i f  ~ dte i('~-vOt d U ( t , - ~ ; ~ ( 1  N)) 
�9 " "  ~ - + ~  ~ _ ~  d t  " ' "  

= l i m  i [  e i ( , ~ -  v , ) ~ U ( m ,  - c ~  ; ~ ( 1 . . .  N )) - e - i ( , ~ -  v,)~ 
K-~OO L 

- i ( ~ o -  Vi) y :S te i (~-v ' ) tg( t  , -oo ;d? (1 . . .  N))]  

(3.23) 
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With 

e+_i(o~- v~)~ = i(r - Vi) fo +- ~dte i(~- v~)t+ 

we can write Eq. (3.23) as 

. ~ ( 1 . . . N ; ~ 0 ) = i [ U ( o o , - ~ o ; O ( 1 . . . N ) ) - 9  1 

+ (, ,  _ v ~ ) f d t e , ( . -  v,), { U( t .  - oc ;~(1 . . . N ) )  - 0 ( -  t) 

- O(t) V(oo ,  - o o ; , ( 1  . . .  N ) ) }  

(3.24) 

Furthermore we have 

i(~o - v i ) f  dtei(~-v'~'[ 0 ( 0  - O ( t -  u, . . . . .  UN)] 

= fo"'+ " "  +"Ndt d e i (" -v ' ) '= e i ( " -~)2~"~-  ~ ( 3 . 2 5 )  

Now Eq. (3.19) follows from the Schwarz-type inequality in Theorem A.1 
since the bounded terms vanish after division by N when N ~ oo. 

The last statement of the theorem can be proved along similar lines by 
Fourier transforming and using convolutions. �9 

Connection with Tail Events. The time origin t = 0 plays no distin- 
guished role in the preceding. By now familiar techniques the lower 
integration limit t = 0 in Eqs. (3.1) and (3.3) can be replaced by t = rM for 
any fixed M. In Theorem 3.1 the perturbers 1 , . . . ,  N are then replaced by 
the perturbers M , . . . ,  N with N ~ c~. Since the result is independent of 
M, one can let M grow arbitrarily. This shows that only the "tail" of the 
perturbers for arbitrarily large collision time determine the intensity opera- 
tor. 

Several Perturber Species. All results of this section carry directly 
over to several perturber species. This is due to the fact that the sum of two 
Poisson processes is again a Poisson process. The xth collision can be by 
any of the perturber species and one just has an additional parameter over 
which to average. The collision frequencies just add. 

In Part II we will insert a noncommutative cluster expansion into Eqs. 
(3.18) and (3.19). The limit over the perturber numbers, N o  oo, can then 
be performed explicitly. This leads to an expansion of the intensity operator 
in terms of truncated quantities from which correlations have been re- 
moved. 
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APPENDIX: INEQUALITIES AND ESTIMATES 

If A is a random operator in a Hilbert space, we define its expectation 
(A)  by 

(cp, (A)+)  := ((~, A+)) (A. 1) 

if the right-hand side exists. Here we consider only the case where one 
obtains bounded operators. A sufficient condition for this is that 

( I IAII )  < oo 

due to the inequality 

II(A)I[ < (HAll) (A.2) 

The following theorem, whose proof will appear elsewhere, is a 
Schwarz-type inequality for random operators. 

Theorem A.1. (Is) Let A , B  be random (bounded) operators in a 
Hilbert space. Then 

II(A*B)II 2 -<< II(A*A)IIII(B*B)II (A.3) 

From this one obtains a triangle-type inequality and other useful 
inequalities. 

Corollary A.1. 

II((A + B)*(A + B))[t 1/2 < II(A*A)[I ~/2 + II(B*B)H 1/2 (A.4) 

[tILA*A)II I / 2 -  II(B*B)II1/21 < [I((A - B)*(A - B))II 1/2 (A.5) 

fI(A*A) - (B*B)]I < ( I[(A*A)tI1/2 + [I(B*B)]I 1/2) 

• [ l ( (h  - B)*(A  - g ) ) l l  1/2 (m.6)  

The next result is a variant of the well-known Bernstein inequality (16) 
whose proof is based on Chebyshev's inequality 

p ( lx l  >1 a} <~ a - l E I g l  (m.7) 

Lemma A.1. Let /'/1,-.-,/'/n be independent identically distributed 
random variables with common density c exp ( - cx )  for x > 0 and zero 
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otherwise. Then 

P ( u  1 + " ' "  + U n ~ ( r t + k n l / 2 ) c  -1)  < e x p ( - k 2 / 4 )  (A.8) 

P ( u ]  + . . .  + u, < ( n  - knl/2)c - ' )  < e x p ( - k 2 / 4 )  (a .9)  

f o r 0 <  k <  n]/2. 

Proof. The assumptions of the general result in Ref. 15 are not 
fulfilled, but the proof can be modified in a simple way as follows. Let 

y = �89 - 1/2 

Then 0 < y / c  < 1/2 and 

E e x p ( v ( u ,  + . . -  + u,)) = (1 - V / c ) - "  

In the Chebyshev inequality (A.7) we now choose 

X = exp [v (u  I + - . .  + u , ) ] / E e x p [ y ( u  1 + . . .  + u,)] 

a = exp(k2/4)  

Note that E I X  [ = 1. Now one has from the series for ln(1 - x) that 

- x - q n ( 1 - x ) <  l + � 8 9  t<  l + x  

for 0 < x < 1/2. Hence 

(X >/ a} --- {u] + - . .  + u, /> - n y - ' l n ( 1  - y / c )  + k 2 / 4 y }  

{u, + . . -  + . .  n / c  + y . / c  2 + k 2 / 4 y }  

Inserting for y then yields Eq. (A.8). Replacing y by - y  one obtains Eq. 
(A.9) in a similar way. [] 

The probability P, of finding n perturbers inside the sphere with radius 
Po and volume Vo at a given time is 

(pv ) ~ 
P" - n! e-"V~ (A.10) 

where v is the (mean) density. The probability Pro(S) that exactly m 
particles enter (or, respectively, leave) the sphere in a time interval of length 
s is 

(cs) m 
Pro(S) = ~ e  -cs (a .  l l )  

where c is the (mean) collision frequency. This is well known and seen by 
elementary arguments. 
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Lemma A.2. Consider the particles inside the Debye sphere at some 
time t o . The probability that at least one of them is inside the sphere at time 
t o + t behaves as O(t -3) for large [tl." 

Proof. Without loss of generality we take t o = 0. An upper bound for 
the time the ~th particle spends in the Debye sphere is given by 

o = 20D/v k 

The Maxwell distribution yields a density function for o proportional to 

o - 4 e x p ( -  const g-2) (A.12) 

This immediately implies 

e { o >  Itl} < constltl 3 

The probability to find, from n particles in the Debye sphere at time 0, at 
least one still inside at time t is then bounded by 

1 - (1 - P {o  > Itl))" ~< nP ( o  > Itl} (A .13 )  

Multiplying this by Pn from Eq. (A.10) and summing over n we get the 
desired result. 

l . emma A.3. Consider the set of those particles each of which is in 
the Debye sphere at some time in [0, t]. The probability that at least one of 
them has a collision duration longer than tL, for some t L, is bounded by 

1 - e x p ( - c o n s t t / t  4) + O ( t [  3) (A.14) 

Proof. First we consider the particles with collision time in [0, t]. The 
probability that there are n of these is, by the Poisson distribution, 

(cltL)n -c1,1 (A.15) 
n! e 

The velocity distribution Eq. (1.15) contains an additional factor vo This 
now changes in Eq. (A.11) o -4 into 0 -5. Hence, for a single particle 
colliding in [0, t], 

P { a/> t L} ~< const t[4 

Multiplying by Eq. (A. 15) and summing over n we obtain 

1 - e x p ( - c o n s t  t / t  4) (A.16) 

which is the first term in Eq. (A.14). Now we apply Lemma A.2 to the 
particles inside the sphere at time 0 and t, resulting in O(t[3). The sum of 
the two probabilities gives an upper bound for the probability in question. 

l 
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Lemma A.4. Let q'N be the collision time of the Nth perturber, which 
is a random variable, and consider the particles inside the Debye sphere at 
this time. Then the probability that at least one of them is inside the sphere 
at time qN -t- t behaves as O([t[-~) for large It[, uniformly in N. 

Proof. The probability of finding (n + 1) particles in the sphere at 
time ~'N is the same as the conditional probability of finding n additional 
particles inside the sphere given that one particle is at its point of closest 
approach. By independence this probability is just Pn of Eq. (A.1). Now the 
argument proceeds as in the previous proof. 
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